Detectors and data

Matthew Rudolph

Syracuse University

August 15, 2019

What we actually measure

- Want to know the momentum and identity of these particles:
 - Electrons
 - Muons
 - Photons
 - Hadrons:
 - Protons and neutrons
 - Pions (lightest meson)
 - Kaons (meson with a strange quark)
- These are all "stable" (at least over 10s of nanoseconds)
- Want to measure as many as possible in each collision

Recording data

Used to literally take a picture of the interaction!

Position detectors

M. Rudolph 10 / 26

Multiple wires

M. Rudolph 11 / 26

Silicon sensors

Tracking

M. Rudolph 13 / 26

Magnetic bending

p = qrB

Calorimeters

- Try to absorb the particle and measure its energy
- Particles passing through PbWO₄ emit scintillation light

LHCb Hadronic calorimeter

- Often simply use metal as an absorber
- Intersperse with a scintillator to measure "samples" of the shower

Photon collection

Photomultiplier tubes

CMS slice

M. Rudolph 20 / 26

Cherenkov light

M. Rudolph 21 / 26

Measure the angle

Putting the pieces together

Measure many decays and use the data to measure some property: rates, angular distributions, etc.

Visualizing an experiment

