TRANSMISSION
WIRELESS TRANSCEIVER

By Thomas Stocklin

Mentor: Raul Armendariz
5/2/25, QCC Physics Department

devices take the fo
circuit (or DAQ). This circuit opera
photomultiplier tubes, and an Arduino microcontro
calculate their energy, and log the exact time of their appearance.

In order to generate a timestamp for when these showers occur, the current DAQ
configuration utilizes a pair of Adafruit GPS modules, one housed inside of the box
and one outside. When a coincidence (that is, two signals occurring at the same
time) is detected by the scintillator, a GPS antenna at a nearby window acquires
a NMEA data timestamp from satellites orbiting the earth. This fimestamp signal is
then transmitted through a ceiling-mounted wire to the DAQ box and it's GPS
receiver. This module then sends this data to the Arduino, and the Arduino then
uses this data, alongside a periodic signal produced by the the GPS module, to
calculate a more accurate timestamp for the shower, down to the microsecond.

» As this project continues, the Physics department is looking to expand placement

of these boxes outside of the QCC Physics Lab, installing them at various locations
around campus and even as far as Brookhaven National Laboratory in Suffolk
County. Unfortunately, some of these locations have regulations that do not
allow the use of ceiling-mounted wires. As a result, there has been ongoing
research into substituting the wired connection with a wireless connection and, to
that end, we he have been experimenting with the Xbee 3 Wireless Transceiver.

THE XBEE 3 WIRELESS
TRANSCEIVER

The XBee 3 was developed by Digi International and
is primarily intended for use with the Arduino and
other microconfroller systems. Lightweight and
affordable, the this tfransceiver boasts an indoor
transmission ron?e of up to 100m, making it ideal for
the limitations of this project.

When the connected to the GPS module placed at
the window, one XBee, programmed as a wireless
transmitter, collects the NMEA data through a wired
connection to the antenna and then converts that
signal it into it's own unique frame data structure.
The XBee will then send this data wirelessly to a
second XBee which has been housed in the DAQ
box in lieu of it's GPS module. This XBee will then
pass this data on to the Arduino for processing.

Photos of a prototype circuit that utilizes this model
have been included in the next two slides for
convenience. The first circuit simulates the
GPS/XBee transceiver setup as described above,
while the second simulates the receiver XBee and
the Arduino components of the DAQ box.

AR

4 y
SN
CEETT LT e

LEEE

lexes

} 4N /
§ | 7
f o
3)

Transmitter Circuit Connections

Arduino 5V to Board Power
Arduino GND to Board GND

Board Power to GPS 5V
Board GND to GPS GND

Board Power to XBee 5V
Board GND to XBee GND

GPS TX to XBee DIN
GPS PPS to XBee DIO2

LI I I]
1

Arduino”

BIGIT

SOl

(N

outTnpJy

PIOJpUY D)
AQY VI3UW

" ® F 8 " ¥ ¥ F R E Y YN

® % @ & F F WS F PR E RN RN
L NN BN SN B B RN B B B BN B D N B R B

" ® @ & & & 9 % 9 F B F P PR R ORE
L BN SR RS D R S R D B S D N L

) ;
i o “ ;
i 9 — Q0 m]
s 2 c= ; m
Ho o Z .= | :
e O o O “ :
S : “
ic oih 2FE “ “
S S 90s58 : m
o oS.SDom : ;
[e _ H 1
HE= T = m m
mm m 0 M.ll.n‘. O m m
iC oTs5d | w
i =Z =0 m]
) Vo o'S ; :
] VY D5 : :
o moo S :]
Hoe XXX m !

-

e e e e e e

SOWESREC Trig'd M Pios: 0.000= SOWESREC
Bctian Setion
Faormat : Format

5 q
Irnages

Lelect

Falder

t 5.00ms CH1 .7 2408
26-Apr-25 0326 <10Hz

I:Z.H'I £ 24 CH1 'I.I:I.I:I'-.-'

cH i h S00ms
26-apr-23 01:15 =10Hz

that data for tro
receiver module to recognize the data.

» The individual frames take the form of ascii characters, but for readak
code will output the data as hexadecimal bytes instead.

7£,0,A, 83,0,0,17,01,0, 4,0, ,5C

Start Byte Frame Length FrameType Deta Payload Checksum

INITIAL PPS CODE

void loop() { « |n order to parse the data, the Arduino will

getData();

if (newPPSData == true && receivedChars[@] == startMarker){ rEBC](j Tf]EB ir]c:C)quir]gg C:r]C]rc]C:TEBrS fr()r71 Tf1€3

printPPSData();

| L 2 receiver XBee one by one. When it receives
else(the character that corresponds to the start

newPPSData = false;

) byte (7E), it will begin to write all of the
i iIncoming characters into an array.
void getbata() { « Once that array has reach the standard size

if(XBee.available() > @ && newPPSData == false){

rc = XBee.read(); of a PPS frame, 14 bytes, the program wiill

if (rc == startMarker){

recvInProgress = true; Theﬂ OUTpUT eGCh |nd|V|dUO| frOme Of The
L (recvInProgress == true){ signal to the serial monitor, as shown below:.

receivedChars[ndx] = rc;
ndx++;

Output Serial Monitor x ¥ 0O =

}

})|/ New Line * 9600 baud i
if (ndx == ppsChars && receivedChars[3] == 131){

receivedChars[ndx] = '\@';
recvInProgress = false;
newPPSData = true;
ndx = 0;

}

}
void printPPSData(){

for (int i = @; i < ppsChars; i++){
Serial.print(receivedChars[i], HEX);
Serial.print(", ");

}

, 3C, BES HIZH

Ln 64, Col 36 Arduino Mega or Mega 2560 on COM7 (22 B

provide a estc
measurements need to be co

\ | T

All computers contain an internal crystal oscillator clock that is use

This clock will oscillate with a fixed frequency, and this frequency will determine
operations the computer will able to perform in a single second. The Arduino Mega 2560 boas
a clock speed of 16MHz, meaning that it's clock will oscillate once every 62.5 nanoseconds, or
16 times a microsecond.

As such, all iterations of this project have used specific coding functions to keep track of the
number of clock cycles that pass between successive PPS pulses, i.e. that pass once a second

Once this wireless iteration of the project is complete, the program will be able to gather
multiple timestamps to determine a.) the time within a second that a PPS pulse is receiveg/xdin
b.) the fime within a second that signal from a Muon coincidence is received. The proggdm will
then calculate the number of clock cycles that pass between these two signals in orgér to get
the exact microseconds that the data is received. This value will then be appended to the GPS
timestamp in order to get the exact time the cosmic ray signal was detected.

TESTING FOR PPS JITTER

» Due to the nature of wireless transmission, the signals we are using for timing will be considerably less
accurate than those gathered from a wireless connection.

» Tests from previous students have determined that the wired connection’s signals would have an average
jitter of £1.25microseconds , meaning that these signals would, on average, be received by the Arduino 1.25
microsecond faster or slower than expected.

» Previous tests with the XBee wireless connection, on the other hand, would display a maximum jitter of £62.5
milliseconds. In attempting to write new code for the project, | wanted to experiment with new methods of
parsing ’rge data in order to see if these numbers were truly accurate, and if they could potentially be
Improved.

Timer1 (16MHz Arduino clock) counts between pps 1PPS litter f{;ﬁm

16003310
16003300

16003290
o, e
16003280 . V.- .-...~'. ..\.g' .
d . .
16003270

16003260 ‘

16500000
@9
2
v
>
© 16000000
x
9
2
o
15500000

16003250

2 mins of data collection
about +/-20 count spread (0.0002% variation)

Time (seconds) Since Start

PPS JITTER CODE

TCCRIA = @; // Sets entire TCCR1A--Timerl Control Register A--to © + Because the Arduino’s internal registers that are used for the
TCCR1B = bit(CS10); // Turns on the Timerl clock and sets it to increment every clock cycle . Q o 0
TCCRIC = @; // Timer 1 Control Register C set to @ timers have a maximum size of 64Kb, or 65535 bits, a separate
WSS ST oS el O S T e R _ _ , variable needs to increment every time the fimer overflows. The
TIMSK1 = bit(TOIE1); // Timer/Counterl's interrupt mask register; TOIE1l is the timer/Counterl > . .
overflow interrupt enable exact number of clock cycles is then calculated by multiplying
Serial.println("Starting up..."); R 3
attachInterrupt(digitalPinToInterrupt(PPS_PIN), PPSHandler, RISING); The nUmber Of OYGFﬂOWS by 65535 Ond Then Oddlng The remclmng
o contents of the timer register.
0 « In order to determine the jitter of the wireless signal, code was
overflowsSincePPS = overflows; written that would gather two different fimer values, one when
’ the PPS pin on the GPS module goes high, and another when the
VgiiDiggl(’g?{ XBee on the receiver end gefts the start byte (7E) of the PPS

if (newPPSData == true 8& receivedChars[@] == startMarker){ transmission. The signal from the PPS pin was gathered by running

G a wire directly from the PPS pin to the Arduino Mega, as shown
} below, and interrupting the program to gather the timer values

else when this PPS pin goes high.

newPPSData = false;

¥
¥

void getData() {
if(XBee.available() > © && newPPSData == false){
rc = XBee.read();
if (rc == startMarker){

lastTimerXBEE = TCNT1;
overflowsSinceXBEE = overflows;
TCNT1 = @; // Resets Timerl Count
overflows = 0;
recentXBEE = true;
recvInProgress = true;

if (recvInProgress == true){
receivedChars[ndx] = rc;
ndx++;

¥

if (ndx == ppsChars && receivedChars[3] == 131){
receivedChars[ndx] = '\@';
recvInProgress = false;
newPPSData = true;
ndx = 0;

i

PPS JITTER CODE

V°ii i’il?ﬁﬁiié% . « Because the XBee can only gather the PPS data by change detection
T e O (high to low or low to high), there is currently no way to prevent the XBee
uint32_t overflowsTempPPS = overflowsSincePPS; from fransmitting an extra signal when the PPS pin goes low. This means
gig:ﬁ;ﬁS#:;;;;rgzr[‘zjﬁ"]’f :Viiﬁx’s"gﬁzmﬁ that for every one second period of the PPS pin’s cycle, two wireless
lastTimerTempXBEE[ndx1] = lastTimerXBEE; signals will be fransmitted to the XBee; and two fimer reading will need to
uint32_t ppsCycles = overflowsTempPPS << 16 | lastTimerTempPPS; be gathered and then added together. The timer counters will then be
(Lot Tomerromaeet] o ;égf;gi?‘;’;&g:ﬁﬁge] + overflowsTenpXBEE[1]) << 16 | reset once the high signal from the XBee is received, and the data will
uint32_t transmissionGap = xbeeCycles - ppsCycles; then be processed and disployed.
il SUEULL SSRGS O = (G55 = [EiEe, o)k « Because, as noted, wireless tfransmissions travel slower, the high
el transmission will be received slightly after the PPS pin on goes high. As a
if(receivedChars[8] == 1 && receivedChars [12] == @x4){ result, if you subtract the sum of the two XBee timer readings from the PPS
g::i:iz;i:'ggpszq{des YO R TR IS8 CI AR I R e R R timer reading will produce the exact number of clock cycles between
Serial.print(overflowsTempXBEE[@]); the PPS pin on the GPS going high and the XBee receiving the correct
Serial.print("\t"); PPS wireless signal. The result of these calculations have been displayed
z::;:i:gi;:ﬁg?‘\’if’;?‘"STemeBEE[1])‘ below, with the two numbers on the right representing the number of
Serial.print(lastTimerTempXBEE[@]); clock cycles and it's corresponding value in milliseconds respectively.

Serial.print("\t");

Serial.print(lastTimerTempXBEE[1]);

Serial.print("\t");

Serial.print(xbeeCycles); // Equivalent to overflowsTemp * 2716 + lastTimerTemp
Serial.print("\t");

Serial.print(transmissionGap);

Serial.print("\t");

Serial.println(transmissionGapMillis);

}

Output Serial Monitor x ¥

M t no on 7" MNew Line * 9600 baud

ndx1++;
if (ndx1 == 2){
ndx1l = 0;
for(int i = 0; i < 2; i++){
overflowsTempXBEE[i] = ©;
lastTimerTempXBEE[i] = ©;
¥
}
recentXBEE = false;
¥
}

o
5
7
F

-

CALCULATING JITTER

» In order to find a suitable average of the clock cycle readings, along with an average jitter,
clock cycle data was collected across five consecutive five minute tests where the two XBees
were separated by a distance of 10m (with a suitable length of wire running from the GPS
module on one end to the Arduino on the other). With each of these tests, approximately 300
clock cycle reading were taken, each one second long, and the data was processed using the
formula below to get an average jitter for the entire test.

MEASURING JITTER

N -
¥ 2ii1(Di — D)?

The delay of

The total number of the Hh packet.

measured packets.

The average delay of all
the measured packets.

» Tests at ten meter
and these needed to adjusted in
100m tests, so further work needs to be done to allo

Average Delay in Milliseconds (10m test 1) Average Jitter (10m test 1)

12 6.00
(®))
k= o
3 10 L 400
0]
(24 O)—CT;
.y X o % 88 0% o0, 5 9 2.00 Z
© | :) \ So ' /
= | | (3 S | . I 1 /
- % e : » Whett T S ey Y 23t T,
£z e 5 50 100 160 200 250 /oo 350
5L , 2= 200
3 5z
s = 2 -4
2 58 00
5 S 600
o 0 =
i; 0 50 100 150 200 250 300 350 800

Consecutive Reading in Sequence Consecutive Reading in Sequence

FUTURE GOALS: GETTING THE NMEA TIMESTAMP

Output Serial Monitor
Message (Enter to send message to "Arduino Mega or Maga 2580" on "COMT')

18:40:29.238 time: 22:40:28 date:

18:40:29.954 JE, 0, &, 83, 0, 0, 13,)) 5E,

18:40:
18:40:
18:40:
18:40:

30.061
an.127
30.225
30.942

7E, 0, R, 83, 0, 0, 14,
7E, 0, 15, 81, o0, O,
time: 22:40:29 date:
7€, 0, &, 83, 0, O,

63, PPS LOW
62, 34, 30,

5E, PP5 HIGH

63,

3z,

New Line

-

¥

9600 baug

18:40:31.047 7E, 0, &, 83, 0, 0, 14, 0O,), 4, 0 PPS LOW
13:40:31.114 7€, 0, 1%, 81, o, 0O, 14, 0, 2A, 62, 34, 30, €3, 33,

18:40:31.245 time: 22:40:30 date: 25:04:25

13:40:31.937 7, 0, », 83, 0, 0, 15, 0, 1, O, 4, O SE, PPS HIGH

13:40:32.040 7€, 0, », 83, o0, 0, 14, 0, 1, 0O, 4, 0O, O, 63, PPS LOW

18:40:32.175 7€, 0, 32, 81, o, O, 14, 0, 25, 61, 32, 32, &2, 34, 30, &3, 33, 31, &4, 32, 35, &5, 30, 34, &6, 35, &7, 34, 30, 34, 35, ZE,
18:40:32.404 time: 22:40:31 date: 25:04:25 Lattitude:40°457'32"N Longitude:73°45'39"W Altitude (meters):41l.
13:40:32.936 7, 0, X, 83, 0, O, 15, o0, 1, O, 4, 0, 4, 5E, PPS HIGH

13:40:33.042 7, 0, &, 83, 0, O, 14, 0, 1, O, 4, O, O, 63, PPS LOW

13:40:33.108 7€, 0, 13, 81, o, 0, 14, 0, 2R, 61, 32, 62, 34, 30,

18:40:33.238 time: 22:40:32 date: 25:04:25

13:40:33.971 7€, 0, », 83, 0, 0, 15, 0O, 1, 4, 0, 4, SE, PP3 HIGH

18:40:34.051 7E, 0, R, 83, 0, 0, 14, 0, 4, 0O &3, PPS LOW

13:40:34.11¢ 7E, 0, 18, 81, o0, 0O,) 32, 62, 34, 30,

18:40:34.248 time: 22:40:33 date:

13:40:34.938 7, 0, &, 83, 0, 0O,)] 5E, PPS HIGH

13:40:35.042 7E, 0, R, 83, 0, 0, 14,), 4) €3, PPS LOW

13:40:35.107 7€, 0, 19, 81, 0, 0O, 14, 0, 23, 62, 34, 30,

18:40:35.242 time: 22:40:34 date: 25:04:25

18:40:35.950 7€, 0, A, 83, 0, 0, 15, 0, 1, O,) 5E, PPS HIGH

18:40:36.061 7E, 0, &, 83, 0, 0, 14, 0O, o,] 63, PPS LOW

13:40:36.126 7E, 0, 18, 81, o, 0O,) 62, 34, 30,

18:40:38.225 time: 22:40:35 date:

13:40:36.941 7E, 0, R, 83, 0, 0, 15, 0,)) SE, PPS HIGH

18:40:37.048 7€, 0, R, 83, 0, 0, 14, 0,)) DPES LOW

Number of Satellites:0

r
r

0,
a0,

O J DU
Nikolai Baca, Physics, Queensboroug
Raul Armendariz Ph.D., Physics, Queensborough
Community College

_/

	Slide 1: Testing Wireless Data Transmission with the XBee Wireless Transceiver
	Slide 2: The Cosmic Ray Detector
	Slide 3: The XBee 3 Wireless Transceiver
	Slide 4
	Slide 5
	Slide 6
	Slide 7: XBee Transmitter Prototype Circuit
	Slide 8: XBee Receiver/DAQ Prototype Circuit
	Slide 9: PPS Pulse
	Slide 10: Frame Data
	Slide 11: Initial PPS Code
	Slide 12: Timestamping with the Arduino
	Slide 13: Testing for PPS Jitter
	Slide 14: PPS Jitter Code
	Slide 15: PPS Jitter Code
	Slide 16: Calculating Jitter
	Slide 17: Results
	Slide 18: Future Goals: Getting the NMEA Timestamp
	Slide 19

