
Sending Adafruit GPS receiver data wirelessly to an Arduino Mega 16
MHz microcontroller using the XBee Series 3 transmitter-receiver
system

D AV I D B U I T R A G O

YO R K C O L L E G E A N D B N L S U L I S U M M E R I N T E R N S H I P P R O G R A M

J U LY 1 5 , 2 0 1 9

Our application

 We are building a data acquisition circuit (DAQ) for cosmic ray muon detectors made from plastic scintillators and photomultiplier tubes. Our DAQ will
consist of a two-channel DAQ front end circuit (amplifiers, discriminators, coincidence logic, and signal peak detectors) connected to an Arduino
microcontroller which digitizes the DAQ FE data and time stamps cosmic ray signals with GPS UTC time.

 The GPS antenna signal is sent to a GPS receiver which communicates to our Arduino; the antenna has to be near a window to see satellites however at
some detector sites the Arduino will be located far from the window and wireless is desired to avoid having to run long cables which attenuate the signal,
and which building rules sometimes do not allow.

We want to compare the GPS timing resolutions for the wired and wireless methods; to do this we measured the number of Arduino clock cycles between
successive GPS 1 PPS pulses.

We have tried these two types of wired GPS connections:

 Wired method 1) a short ~5m antenna cable to the receiver, and a long ~100 ft. CAT6 network cable from the receiver to the Arduino; this ensures lower
attenuation on the antenna analog signal.

 Wired method 2) a longer ~100 ft. antenna cable to the receiver, and we plug the receiver directly into the Arduino. We connect them this way when we
don’t want to leave the receiver by the window. The problem with this method is the longer antenna cable attenuates the signal.

Equipment

 Arduino Mega 2560

 Adafruit RF GPS Antenna 960, 1.575 GHz active antenna with 28 dB gain,

 Adafruit GPS Breakout 746, 1.575 GHz, 66 Ch with 10 Hz updates

 Adafruit GPS Logger Shield 1272 for Arduino, 66 Ch with 10 Hz updates

 RG174 coaxial cable

 XBee Series 3

 The first part of my project was understanding Arduinos and the code a previous student (Junjie) had already created to
operate our Arduino for data acquisition.

 Arduinos are powerful microcontrollers that can grab and print serial data, send and receive digital data and convert
analog data to digital data.

Our DAQ board will consist of a two channel DAQ front end board connected to the Arduino microcontroller and GPS.

Wired vs Wireless:

GPS Antenna

GPS Receiver

Arduino

DAQ

GPS
Receiver

Arduino

DAQ

GPS Antenna

XBee 2

XBee 1

Wired :

 For the wired setup the
receiver can be close to the
antenna or close to the
Arduino. In either case a long
cable is required which can be
inconvenient in places that
require additional permissions
to run cables.

Wireless:

 For the wireless setup
the receiver is near the
antenna and a long
cable is not required,
thus no cable
attenuation to the
signal.

Results for wired method 1:

Here are Junjie’s previous measurements of the number of clock cycles between successive PPS pulses for a wired connection; the
wire from antenna to receiver was 5m, and the network cable from receiver to Arduino was 100 ft. The results show oscillator drift
or jitter of about of +/- 20 clock cycles which corresponds to +/- 1.25 microsec resolution

16003250

16003260

16003270

16003280

16003290

16003300

16003310

0 20 40 60 80 100 120 140 160

co
u

n
ts

pps

Timer1 (16MHz Arduino clock) counts between pps

2 mins of data collection
about +/-20 count spread (0.0002% variation)

+/- 1.25 ms resolution
when using the wired
GPS connection
(a short cable ran from
antenna to receiver and a
long network cable from
receiver to Arduino)

Results from wired method 2

For this we used 100 ft of RG174 coax cable running from the GPS antenna to the GPS receiver shield and plugged the receiver
directly into the Arduino. The receiver did not receive the antenna signal; so we measured the cable attenuation by injecting a
square pulse down the cable and measuring its power coming out the other end with an oscilloscope terminated in 50 Ohms.

 P = V2/R
◦ Pin = (5V)2/50 Ohms = 0.5 Watts

◦ Pout = (0.4V)2/50 Ohms = 0.0032 Watts

◦ Cable attenuation = 10*log(Pin/Pout) = 22 dB

◦ The spec sheet for RG174 cable says at 1 GHz it has 32 dB per 100 ft.

The GPS antenna specs say it has 28 dB of gain; we are not sure why the
receiver is not seeing the antenna signal. We will remeasure the cable
attenuation but this time for a 1.575 GHz signal which is the frequency of the
GPS antenna signal.

At a different detector site we used 100 ft. of RG58 instead of RG174 and the
GPS receives the antenna signal.

Input Signal

Output Signal

Results from wireless method:

 The required specifications for the wireless controller are:

 - Have a baud rate of 9600 (matching our GPS receiver).

 - Have the correct data transfer protocol to handle fast data transfer.

 - Have available resource materials.

 The XBee fits all of these requirements; other wireless technologies exist but there was not much information on their use with an
Arduino; XBees seem to be the standard when it comes to wireless communication with Arduino.

 XBee series 3 has the added benefit of itself being a microcontroller capable of sending messages to a serial port.

Wireless Setup

 Once the equipment was purchased the next step was to solder and put together the circuitry ,and begin
transferring GPS data.

 The multipoint 802.15.4 WIFI protocol is used; Digimesh and ZigBee protocols were considered but they
take longer time to transfer data.

Goals for GPS data

 With the setup now complete the next step is to wirelessly transfer from GPS to Arduino the 1 PPS signal and the
NMEA serial data.

 The goals for the GPS data:

1. Obtain the 1PPS signal for the start of each second of UTC time. This was achieved by configuring the XBee to
forward all incoming signals from the 1PPS pin on the adafruit receiver to the Arduino.

2. Measure any variation in the number of Arduino clock cycles between the receipt of successive PPS pulses
to quantify timing uncertainties

3. Print and save NMEA sentence data (such as date, time, longitude, latitude, and number of satellites). This was
achieved by connecting to the RX TX pins on the adafruit receiver and figuring out how to print the data to the serial
monitor.

 GPS Data Examples
At first the NMEA data got corrupted when we wirelessly transferred it but this has been fixed.

Corrupted Data Fixed Data

1PPS Jitter

 The next step was to observe the 1PPS jitter; code was written for the Arduino to record the number of clock cycles between
successive PPS pulses. The results show inconsistent jitter of about of +/- 106 clock cycles or +/- 62.5 ms, which seems to
increase over time. However the majority of time the number of cycles land around the expected 16 million. We are not sure
what the cause of the jitter is, it may be related in part to the GPS module not being configured.

14500000

15000000

15500000

16000000

16500000

17000000

17500000

0 100 200 300 400 500 600 700 800

C
lo

ck
 C

yc
le

s

Time (seconds) Since Start

1PPS Jitter
+/- 1 million cycles
(100 milliseconds) +/- 62.5 ms resolution when

using the XBee wireless for
GPS

Remaining Goals For Summer

 Finish programming the Arduino script to parse GPS NMEA data (eliminate copies of repeating sentences).

 Find a way to program the XBees to pass commands from the Arduino to the GPS so that we can select which NMEA data
we want and how often we want to receive GPS time information.

 Find an ideal enclosure for the Xbee and GPS wireless electronics.

 If there is time look more carefully at the 1 PPS jitter.

