NOvA Experiment

Neutrino Activity

Building Blocks of the universe

Standard Model of Particle Physics

Forcing carrying bosons

Three generations of fermions

Quarks

3 positively charged quarks

3 negatively charged quarks

Make up protons, neutrons, etc

Leptons

3 charged leptons

3 neutral leptons

Heavy cousins of the electron

Heavier versions of the electron Muon – μ

200 times the electron mass Lifetime of 2 μ s Interact with us as cosmic rays $\Theta(1)$ through hand each second $\Theta(10\%)$ daily radiation exposure

Tau – τ

3,500 times the electron mass Lifetime of 0.3 ps

What about the neutrinos

Neutrinos are probably the least understood Standard Model particle

We've known about them for ~100 years
2nd most abundant particle in universe
Θ(100 million) per cubic meter
100 billion solar neutrinos pass
through your finger nail each second

What about the neutrinos

How they're different

No electric or color charge No EM or strong interactions

Extremely tiny mass At least a million times less massive than an electron

Only interact through weak force and gravity

Gravity is so weak

Only observed in cosmology

Completely ignorable at particle level

Weak interaction important at particle level Mediated by W & Z bosons with mass

 $M_{Z,W}$ typically greater than v energy

Think Heisenberg Uncertainty \rightarrow Rare chance to create mass energy \rightarrow Rare chance to interact

Neutrino Flavor

Identify neutrino flavor through charged-current (CC) interaction

Neutral Current (NC) Interaction

All neutrino flavors look the same

Neutrinos Rarely Interact

Shoot a neutrino through a infinite long slab of lead It most likely won't interact until it has spent over 1 year traveling through the material

There is some probability that a neutrino will interact at any point

The more neutrinos that pass through a point, the more chances that one will interact at that point

NOvA Experiment

NOvA Neutrino Beam

Number of neutrinos produced is proportional to the number of protons on target

NOvA Detectors

4 cm × 6 cm

Neutrino Interactions

Proton

Neutrino Flavor

Identify neutrino flavor through charged-current (CC) interaction

Neutral Current (NC) Interaction

All neutrino flavors look the same

Neutrino Interactions

Let's look at FD events

- Students form groups of two and look at FD event displays
- Note for the same exposure of protons-on-target for the NOvA FD data used for this study there are:

6 NuMu-CC events – only the numu flavor can cause these events 40 NC events – any neutrino flavor can cause these events *Relative to a specific selection criteria applied to data sample*

- By looking at the images can each group come up with some <u>quantifiable</u> criterion (or criteria) that could be used to distinguish NuMC-CC events from NC events
- Discuss groups' thoughts on what *quantifiable* criterion could be applied

About the event displays

There are two views

- One in which all of the cells are vertical
- One in which all of the cells are horizontal

Color indicates energy that is deposited in the cell by the particle

Work as a group

Let's look at FD events

- Students form groups of two and look at FD event displays
- Note for the same exposure of protons-on-target for the NOvA FD data used for this study there are:

6 NuMu-CC events – only the numu flavor can cause these events 40 NC events – any neutrino flavor can cause these events *Relative to a specific selection criteria applied to data sample*

- By looking at the images can each group come up with some <u>quantifiable</u> criterion (or criteria) that could be used to distinguish NuMC-CC events from NC events
- Discuss groups' thoughts on what *quantifiable* criterion could be applied

Neutrino Interactions

NuMu's are identifiable through presence of a muon that make a long straight track

Spreadsheet of ND events

The ND events are collected using a data sample that corresponds to 1/50th the protons-on-target as the FD.

Question for students: Think about what you might expect about a spread sheet with ND events, that corresponds to 1/50th of the beam exposure as the FD. Then open the spread sheet, and discuss if anything meets your expectations or not?

Spreadsheet of ND events

Question for students: Why are there so many events in the ND file compared to the FD even though the ND files is a much smaller amount of protons-on-target?

The near detector is much closer to the neutrino source than the far detector \rightarrow greater flux of neutrinos passing through the near detector

Think about a flash light shining on a wall when you are close and far away.

The near detector is much closer to the neutrino source than the far detector \rightarrow greater flux of neutrinos passing through the near detector

Think about a flash light shining on a wall when you are close and far away.

Expect 700,000 times the events

But the ND is much less massive than the FD Neutrinos interact with proportionally less nucleons Particles produced in neutrino interactions are more likely to escape smaller ND. Only look at events that are fully contained

Expect 700,000 times the events

But the ND is much less massive than the FD Neutrinos interact with proportionally less nucleons Particles produced in neutrino interactions are more likely to escape smaller ND. Only look at events that are fully contained

Effect of smaller mass and preselection for these events reduces ND event yields by a factor of \sim 170 compared to the FD

Expect 700,000 times the events

But the ND is much less massive than the FD Neutrinos interact with proportionally less nucleons Particles produced in neutrino interactions are more likely to escape smaller ND. Only look at events that are fully contained

Effect of smaller mass and preselection for these events reduces ND event yields by a factor of \sim 170 compared to the FD

Roughly expect 700,000/170 \approx 4000 times more events in ND than FD for same POT

Expect 700,000 times the events

But the ND is much less massive than the FD Neutrinos interact with proportionally less nucleons Particles produced in neutrino interactions are more likely to escape smaller ND. Only look at events that are fully contained

Effect of smaller mass and preselection for these events reduces ND event yields by a factor of \sim 170 compared to the FD

Roughly expect 700,000/170 \approx 4000 times more events in ND than FD for same POT

The ND has $1/50^{\text{th}}$ the protons-on-target, so we <u>roughly</u> expect $4000/50 \approx 80$ more events in ND than FD

Expect 700,000 times the events

But the ND is much less massive than the FD Neutrinos interact with proportionally less nucleons Particles produced in neutrino interactions are more likely to escape smaller ND. Only look at events that are fully contained

Effect of smaller mass and preselection for these events reduces ND event yields by a factor of \sim 170 compared to the FD

Roughly expect 700,000/170 \approx 4000 times more events in ND than FD for same POT

The ND has $1/50^{\text{th}}$ the protons-on-target, so we <u>roughly</u> expect $4000/50 \approx 80$ more events in ND than FD

Does our ND sample match our order of magnitude estimate?

– Do some coding to identify CC vs NC

– Do some coding to identify CC vs NC

- Do results match your expectations?

Do some coding to identify CC vs NC

Do results match your expectations?
 How about just the NC events?
 How about just the CC events?

– Do some coding to identify CC vs NC

Do results match your expectations?
 How about just the NC events?
 How about just the CC events?

- What causes NC events and what causes CC events?

Do some coding to identify CC vs NC

Do results match your expectations?
 How about just the NC events?
 How about just the CC events?

What causes NC events and what causes CC events?
 How could ND NC events match your expectations from the FD, but ND CC not?

Do some coding to identify CC vs NC

- Do results match your expectations?
 How about just the NC events?
 How about just the CC events?
- What causes NC events and what causes CC events?
 How could ND NC events match your expectations from the FD, but ND CC not?

Neutrinos change flavor as they travel!

We call this neutrino oscillation, since they will eventually change back to their original flavor