Neutrinos

The illusive little neutral ones

The Standard Model of Particle Physics

- Quarks and Leptons: matter particles
 - Sauge Bosons: Force mediators
 - Soson: Excitation of the Higgs field which gives

neutrinos?

- of the weak force
- /insic properties, charge(s), chirality Characterized (~spin)
- Quantum fields: wavelike entities...

Neutrinos

- Matter particles, spin ½ ferminons
- Three flavors: electron, muon, tau
- Charged only with weak isospin (one of 3 types of • charges known)
- Massless (in original Standard Model) •
- Most abundant particle with mass in the universe ٠
- Trillions go through your body every second •

Neutrinos

- Radioactivity, discovered in 1896, by Becquerel in U, later Rutherford separated into α , β , and γ radiation based on penetration depth
 - α are He nuclei 2n2p,
 - β^{\pm} , are electrons/positrons
 - γ are high energy photons, particles of light
- Problem:
 - In α and γ decays the γ , α particles are emitted in a narrow energy distribution
 - Example $\alpha: {}^{235}_{92}\text{U} \rightarrow {}^{231}_{90}\text{Th} + \alpha({}^{4}_{2}\text{He}),$
 - Example $\gamma: {}^{60}_{27}\text{Co} \xrightarrow{beta} {}^{60}_{28}\text{Ni}^* \rightarrow {}^{60}_{28}\text{Ni} + \gamma(1.33\text{MeV})$
 - Not so in β decay, where emitted e in broad (cont.) energy spectrum
- Neutrino proposed by W. Pauli (1930) to fix nuclear beta decay
 - Preserve conservation of energy and momentum, whew!
 - ${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{C} + e^- + \bar{\nu}_e$
 - $n \rightarrow p + e^- + \bar{\nu}_e$
 - ${}^{14}_{6}\text{Mg} \rightarrow {}^{14}_{7}\text{Na} + e^+ + \nu_e$

Feynman Diagram of neutron decay, the basic diagram in beta decay

Wolfgang Pauli 1900 – 1958: circa 1930

By HPaul - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=39687813

Neutrino Sources

- The most abundant massive particle known to exist
- Primordial neutrinos, relic CvB aka CNM (vs. CMB)
 - Created in processes like $e^- + e^+ \rightarrow v_e + \bar{v}_e$
 - Decoupled from the rest of matter at about 1 second after the BB ٠
 - Used by astrophysics to pin down ν properties such as: masses, generations...
- In stellar cores (Standard Solar Model)
 - *pp* process: $p^+ + p^+ \rightarrow {}^{2}\text{H} + e^+ + v_e$ 91%, $E_v < 0.42 \text{ MeV}$
 - Other nuclear reactions create ³He, ⁴He that lead to creation of Beryllium and Boron $+\nu_{\rho}$

 - Beryllium pro.: ${}^{7}\text{Be} + e^{-} \rightarrow {}^{7}\text{Li} + v_{e}$ 7%, $E_{v} = 0.86/0.36 \text{ MeV}$ Boron pro.: ${}^{7}\text{Be} + p^{+} \rightarrow {}^{8}\text{B} + \gamma \rightarrow {}^{8}\text{Be}^{*} + e^{+} + v_{e}$: 0.02%, $E_{v} < 15 \text{ MeV}$
- In Cosmic rays
 - Primary Cosmic rays are mostly p^+ , α^{++}
 - Secondary CRs are low mass hadron (pions, kaons)

$$p + N \to \begin{cases} \pi^- \to \mu^- + \bar{\nu}_{\mu} &, \mu^- \to e^- + \bar{\nu}_e + \bar{\nu}_{\mu} \\ \pi^+ \to \mu^+ + \bar{\nu}_{\mu} &, \mu^+ \to e^+ + \bar{\nu}_e + \bar{\nu}_{\mu} \end{cases}$$

- Note that muon neutrinos are 2x electron neutrinos
- Man made: Fission reactors and Particle accelerators

Neutrinos Interactions

- Neutrinos, hardly interact with ordinary matter
 - Cross-section is $\sigma(vN) \sim 10^{-38} \ cm^2$ Cross-section is $\sigma(vN) \sim 10^{-38} \ cm^2$, $\sigma(pp) \sim 10^{-26} \ cm^2$

$$\sigma(\nu N) = \frac{n_{Collisions}}{T_N \Phi_{\nu_{beam}}}$$

Need ~½ light years thick hunk of iron to

- Carry only Weak isospin, (a kind of charge that is neither electric or color)
- Interactions with ordinary matter:
 - Via charge or neutral current (exchange W^{\pm} or Z^{0} boson)
 - Different kinds of interactions used to tag the flavor of incident neutrino
 - Decay products (charged particles) used to establish ν kinematics
- Particle detection 101

Ordinary matter detectors can detect only "stable", "charged" things

- p^{\pm} , e^{\pm} , γ (E&M and stable)
- $\mu^{\pm}, \pi^{\pm}, K^{\pm}$ (E&M and not as stable $\tau \sim 10^{-6-8}$ s), n^{0} (~900s)

Neutrino Detectors

- Solar, reactor, atmospheric neutrinos (different energies)
- Large volume of active detector material (H₂O...), instrumented with electronic sensors, usually light detectors (PMTs)

Pioneering Neutrino Experiment

- First neutrino detector (1953): Reines and Cowan, uses the inverse beta decay process
 - Rare interaction with tiny cross-section but interaction signatures are quite unique
 - Two large tanks of 200 L of H₂O with 40 kg of dissolved CdCl₂. Water tanks btw scintillators lined with PMTs, underground near a Savannah River reactor (*originally near A-bomb explosion*)
 - $(\bar{\nu}_e + p^+ \rightarrow n + e^+) (e^-) ({}^{108}_{48}\text{Cd}) \Rightarrow ({}^{109}_{48}\text{Cd}^* \rightarrow {}^{109}_{48}\text{Cd} + \gamma), (e^+ + e^- \rightarrow \gamma + \gamma)$
 - Look for back-to-back 0.5 MeV γ , in coincidence with decay of $\frac{109}{48}$ Cd^{*} a few μs later
- Result : $\sigma(\bar{\nu}p) = 6.3 \times 10^{-44} \text{cm}^2$ (close to prediction)

Homestake and the Solar Neutrino Problem

- Pioneering Solar Neutrino experiment
 - Giant (swimming pool size) vat of Cleaning fluid C₂Cl₄, in the Homestake mine, in South Dakota 5,000 ft underground
 - Radio-chemical experiments designed by R. Davis with J. Bahcall (theorist)
 - Reaction $v_e + {}^{37}\text{CL} \to e^- + {}^{37}\text{Ar} (E_{th} = 0.814 \text{ MeV})$
 - But ³⁷Ar has a half life of 35 days, expect 1.5 atoms per day
 - Extract N_{ν} by counting the number of argon atoms collected every few weeks
- Concluded: about 30% of the expected rate observed
 - The solar neutrino problem!
 - Confirmed by other experiments GALLEX, SAGE, IMB, SuperKamiokande...
 - Stood for +20 years
- Neutrino oscillations, $\nu_e \rightarrow \nu_{\mu,\tau}$

Neutrino Detectors

- Today neutrino experiments follow along quite similarly:
 - 1. Use huge volumes of active material, water, or other materi
 - 2. Surround volume with sensors, usually PMTs
 - 3. Do clever things with data analysis...
 - 4. Publish results
- Neutrino Discoveries
 - v_e : 1953 by Cowans and Reines, Savanah River reactor
 - u_{μ} : 1962 by Lederman, Schwartz and Steinberger, accelerator at BNI
 - v_{τ} : 2000 by E872, Direct Observation of NU Tau (DC collaboration, Tevatron accelerator at FNAL

Т	ist of no	utvino ormoniu	. onto										
	list of ne	utrino experin	ients										
Fro	From Wikipedia, the free encyclopedia												
Th	is is a non-exhau	ion-exhaustive list of neutrino experiments, neutrino detectors, and neutrino telescopes.											
	Abbreviation \$	Full name 🔶	Sensitivity ^[a] \$	Type	Induced reaction	Type of reaction ^[b] \$	Detector \$	Type of detector \$	Threshold energy \$	Location \$	Operation 4	Hon pag	
AI	NNIE	Accelerator Neutrino Neutron Interaction Experiment								SciBooNE Hall, Illinois, United States	future		
AI		Astronomy with a Neutrino Telescope and Abyss Environmental RESearch	ATM, CR, AGN, PUL	v_{e},v_{μ},v_{τ}			Seawater	Cherenkov		Mediterranean Sea, France	2006-		
A	RIANNA	Antarctic Ross Ice-Shelf ANtenna Neutrino Array	S, CR, AGN, ?	v_e, v_μ, v_τ						Ross loe Shelf, Antarctica	future		
Bi	DUNT (NT-200+) aikal-GVD	Baikal Deep Underwater Neutrino Telescope / Gigaton Volume Detector	S, ATM, LS, AGN, PUL	$v_{\alpha}, v_{\mu}, v_{\tau}$		CC, NC	Water (H ₂ O)	Cherenkov	≈10 GeV	Lake Baikal, Russia	1993-	(4) ([5] (
or	OREXINO	BORon EXperiment	LS	ve	$v_{\chi} + e^- \rightarrow v_{\chi} + e^-$	ES	LOS shielded by water	Scintillation	250–865 keV	Gran Sasso, Italy	May 2007–		
в	UST	Baksan Underground Scintillation Telescope		_				Scintillation		Baksan River valley, Russia	1977-		
ce	lera	Lithium Enhanced Raghavan- optical-lattice	BN	ve	$\widetilde{v}_e + p \rightarrow e^+ + n$		WLS Plastic Scintillating Cubes and Lithium-8-loaded Zinc Sulfide Sheets	Scintillation	1.8 MeV	North Anna, Virginia, USA	June 2017-		
16	JT)	Cryogenic Low-Energy Astrophysics with Neon	LS, SN, WIMP	v _e	$v_x + e^- \rightarrow v_x + e^-$ $v_e^+ e^{20} Ne \rightarrow v_e^- + e^{20} Ne^-$	ES ES	Liquid Ne (10 t)	Scintillation		SNOLAB Ontario, Canada	future	[10]	
	OBRA	Cadmium zinc telluride 0- neutrino double-Beta Research Apparatus			$ \begin{split} & ^{61}Z_{2}h + e^{-ie^{-ie^{ie^{ie^{ie^{ie^{ie^{ie^{ie^{ie^{ie^{$	BB	Cadmium zinc telluride			Gran Sasso, Italy	2007		
	OHERENT	COHERENT	AC	$v_{\mu}, \overline{v}_{\mu}, v_{e}$	$v + nucleus \to v + nucleus$	NC	Csi[Na], Nal[Ti], HPGe, LAr	Coherent Elastic Neutrino Nucleus Scattering (CEvNS)	few keV nuclear recoil energy	Spallation Neutron Source at Oak Ridge National Laboratory	Nov 2018-		
		Daya Bay Reactor Neutrino		-				Calatillation					

https://en.wikipedia.org/wiki/List_of_neutrino_experiments

Neutrino Physics

- Astrophysics: A way to "see" without using photons
 - Properties that make them difficult to detect allow us to use them as "microscopes"
 - Early Universe, ν decoupling occurred ~1 second after the Big Bang (CMB γ decoupled ~380,000 years after the Big Bang)
 - Observation of supernova events
 - The physics of stellar cores, neutron stars, The standard solar model
- Particle Physics: They are fundamental particles after all
 - Masses are at different scale ⇒ likely a non-Higgs phenomena
 - Possible source of *CP* violation ⇒ matter/anti-matter asymmetry
 - Why are all $\bar{\nu}/\nu$ right/left-handed? \Rightarrow Weak interaction maximal parity violating
 - Sterile neutrinos, do they exist? are neutrinos their own anti-particles?
 - Neutrino oscillations, purely quantum mechanical, somewhat complicated
 - Solar neutrino problem: only 33% of expected detected
 - Atmospheric neutrino problem: 50% of expected detected
 - Resolved: $\nu_e \rightarrow \nu_\mu \rightarrow \nu_\tau \rightarrow \nu_e \rightarrow \nu_\mu \rightarrow \nu_\tau \rightarrow \nu_e \rightarrow \nu_\mu \rightarrow \nu_\tau$
- Worthy of Nobel Prizes:
 - 1995 Nobel in Physics: ½ Reines (& Cowan) for the detection of v_e in 1953
 - 1988 Nobel in Physics: Lederman, Schwartz and Steinberger, detection of 2 types of ν (ν_{μ}) in ν beams, 1962 at BNL
 - 2002 Nobel in Physics: $\frac{1}{2}$ Koshiba, and Davis, detection of ν in cosmic rays, 1970s at Kamiokande and Homestake
 - 2015 Nobel in Physics: McDonald and Kajita, detector could resolve the 3 ν flavor, $\nu_e \nu_\mu \nu_\tau$, observed the flavor changing mechanism, 1980s SNO and SuperKamiokande

