

MINERvA Masterclass Start-up

The Fermi National Accelerator Laboratory (Femilab) is the place to be to study neutrinos. The short- and long-baseline programs investigate all sorts of neutrino behaviors and shed light on the nature of the universe.

Fermilab Accelerator Complex

MINOS and MINERvA

protons \rightarrow target \rightarrow pions \rightarrow muons + neutrinos \rightarrow neutrino beam

<u>Video Options</u>: <u>How to Make a Neutrino Beam</u> (cartoon) OR <u>How do You Make a Neutrino Beam?</u> (Don Lincoln)

The MINERvA Detector

QuarkNet MINERvA – Our interaction zone

Muon neutrinos hit the carbon target. MINERvA measures the products of the interaction.

A muon neutrino interacts with a carbon nucleus. The interaction results in a muon and a proton that are ejected from the nucleus. What happens to the momentum initially carried by the muon neutrino?

Measurement

Neutrino (no track) → proton + muon MINERvA can measure the momentum of both the proton and muon.

Signal vs. Background

Background events:

- Do not fit signal paradigm of one short proton track, one long muon track, or
- Confound the ability of MINERvA to measure momentum accurately.

Signal vs. Background

One of these is signal, one is background. Which is which? Why?

Signal vs. Background

One of these is signal, one is background. Which is which? Why?

QuarkNet Measure signal in Arachne

Module

Module

Arachne

Module

Transfer to spreadsheet

3																
4	merged			Background	Zoo	Muon					Proton					Net
5	Tuple	Entry		(enter a 1)	(enter a 1)	KE (MeV)	v/c	px (MeV/c)	py (MeV/c)	pz (MeV/c)	KE (MeV)	v/c	px (MeV/c)	py (MeV/c)	pz (MeV/c)	px (Me
154	78		38			2,468.00	0.99917	127.87	-451.51	2,527.66	250.63	0.61	282.26	73.04	669.32	2
155	78		39			4,180.98	0.9997	-290.25	322.75	4,262.65	4,180.98	1	-290.25	322.75	4,262.65	5
156	78		40			2,783.10	0.99934	-181.33	-468.2	2,842.18	299.54	0.65	40.96	609.33	527.92	2
157	78		41													
158	78		42			3,467.68	0.99957	311.9	-624.25	3,502.30	1,219.51	0.9	169.69	-339.63	1,905.48	3
159	78		43			6,862.50	0.99989	579.99	-95.45	6,941.86	330.54	0.67	-61.04	308.27	794.1	1
160	78		44			70.27	0.80069	56.54	-31.5	124.52	158.34	0.52	228.67	-127.41	503.58	3
161	78		45			4,687.34	0.99976	-602.76	-335.44	4,741.27	158.34	0.52	228.67	-127.41	503.58	3
162	78		46			2,879.91	0.99938	-369.07	-127.86	2,957.39	1,286.94	0.91	-249.61	-86.47	2,000.18	3
163	78		47			3,890.06	0.99965	-295.93	433.85	3,959.00	1,397.32	0.92	-158.47	232.33	2,120.09	9
164	78		48			5,784.31	0.99984	370.25	-586.18	5,847.42	169.58	0.53	-246.29	271.65	460.9	9
165	78		49			3,074.27	0.99945	-228.59	-303.83	3,154.71	1,432.36	0.92	-156.6	-208.15	2,161.23	3
166	78		50			5,756.19	0.99984	326.56	-411.38	5,836.67	5,784.31	1	370.25	-586.18	5,847.42	2
167																
168																
169																
170																
171	79		0													
172	79		1			125.64	0.89036	111.97	-12.75	171.66	260.46	0.62	406.75	-46.31	623.59	9
173	79		2													
174	79		3			2,745.79	0.99932	-396.07	-157.98	2,816.76	1,493.81	0.92	-311.93	-124.42	2,218.35	5
175	79		4			235.04	0.60049	337.93	-438.13	435.93	235.04	0.6	337.93	-438.13	435.93	3
176	79		5			3,844.64	0.999646564	457.9591639	344.430018	3,906.44						
177	79		6								rin -					
178	79		- 7													
179	79		8													
180	79		9													
181	79		10													
182	79		11													
183	79		12													
184	70		13													

QuarkNet

What do we know?

Conservation of Momentum

Initial momentum:

 p, all in z (beam) direction Final momentum:

• $p_z = p_{zp} + p_{z\mu}$ • $p_x = p_{xp} + p_{x\mu}$ • $p_y = p_{yp} + p_{y\mu}$

- If we measure final p_x, p_y, and p_z for many events in MINERvA, what do we get? Why?
- What does this imply?

Keep in Mind. . .

"Science is nothing but developed perception, interpreted intent, common sense rounded out and minutely articulated." *George Santayana*

Indirect observations and imaginative, critical, logical thinking can lead to reliable and valid inferences.

Therefore: work together, think (sometimes outside the box), and <u>be critical</u> of each other's results to figure out what is happening.

Let's Analyze Events!

Make teams of two.

Practice.

- Talk with physicists.
- Find good $p^+ + \mu^-$ candidates.
- Which events go to the spreadsheet?
- Let's plot final p_x , p_y , and p_z .
- Let's see what they mean!
- Report! Rapport! Rejoice! Relax!