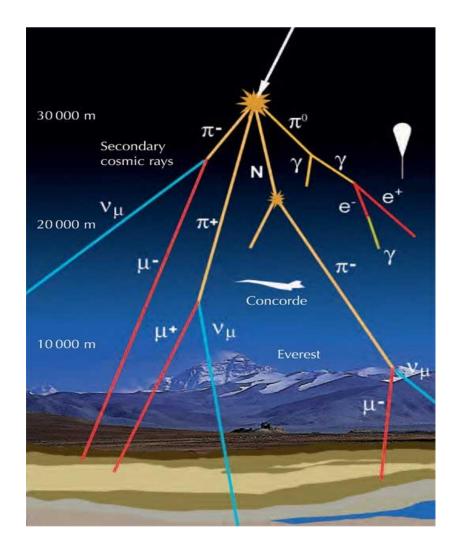
Cosmic Ray Detection

Justin Mulé, Suffolk County Community College Raul Armendariz PhD, Queensborough Community College (QCC)

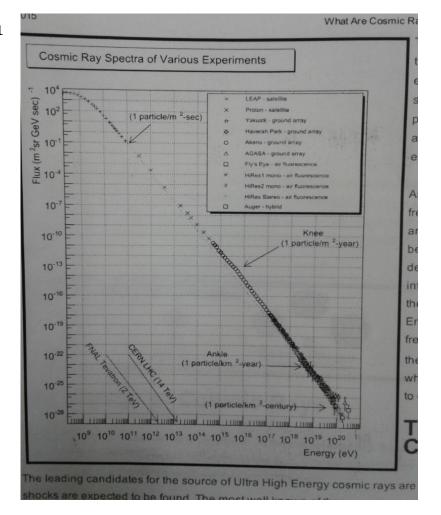
> August 2018 QCC REU Internship

1


Measuring Cosmic Ray Showers

- Collect, analyze, and plot muon shower data.
- Measure muon showers with detector counters separated by 1m, 10m, 100m, and 1Km.
- Determine the shower rate for certain number of counters per DAQ
- Determine shower rate as a function of gate width and as a function of separation distance between counters.

Control Panel TOT Monitor Rate Monitor Shower Monitor Geometry
_og file: Histograms of time-over-threshold xt Choose File
Serial port: COM24
S/N: 7049 Update Reset scalers(RB) Reset board(RE) GPS(DG)
Help: Page 1(H1) Page 2(H2) Barometer(HB) Status(HS)
Trigger(HT) Setup(V1) Voltages(V2) GPS Lock(V3)
GPS status: A (valid) Sats used: 6 T= 21.2 deg C P= 1031.0 hPa DAC= 1520 Latitude: 40:50.904733 N Longitude: 073:03.334196 W Altitude: 112.914m Time: 15/03/18 16:14:38.001
Scalers(DS): 109589 0 0 401582 733 Control registers(DC): 19 70 0A 00
Timing registers(DT): 00 00 04 00
Trigger Ch. 1 Ch. 2 Ch. 3 Ch. 4 Coincidence level:
Threshold(TL): 300.0 300.0 300.0 mV
Status output: Reset scalers(ST 3 x) Time interval: 5 min
Data output: Enable(CE) Disable(CD)


Cosmic Ray Showers

- Primary cosmic ray hits earth's atmosphere and collides with protons and other heavy elements.
- Primary ray decomposes into secondary particles such as neutrinos, pions, muons.
- Muons reach the ground due to time dilation, and are detected by plastic scintillator.

Various Experiments

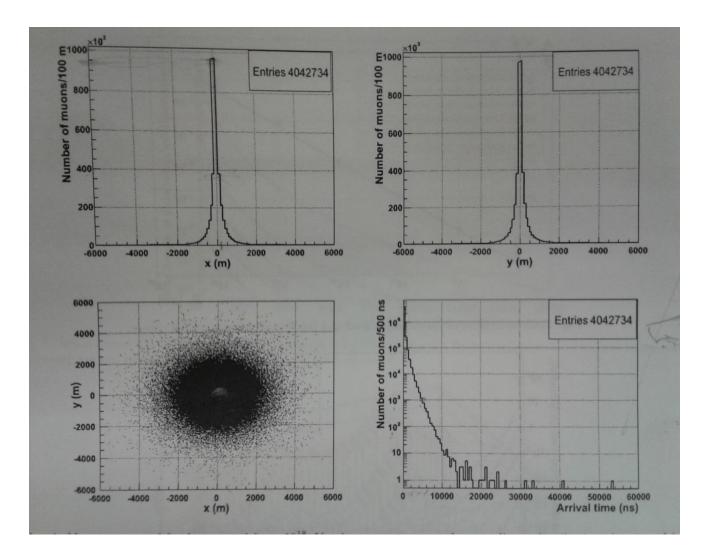
- X-axis = Energy Level of Cosmic Ray Primaries (eV)
- Y-axis = Flux Rate of Cosmic Ray Primaries scaled to $(m^2 \text{ sr GeV sec})^{-1}$
- Primary flux rates of various energies.
- How many primaries enter the atmosphere of certain energy levels
- Some of these particles have an energy level of 10^{20} eV.
- What could cause these particles to accelerate with such energy?

Primaries Entering Earth's Atmosphere

- Multiply the energy of the primary cosmic ray by the rate of flux
- Divide this number by 10^9 to convert this number to eV
- In variable form, this equation looks like:
- (Energy Level)(Flux)(10^{-9}) = Hits• m^2 •s
- Flux depends on solar wind, earth's magnetic field, and the energy of the primary cosmic ray.
- Flux is also dependent on latitude, longitude, and azimuth angle.

Particle energy (eV)	Particle rate (m ⁻² s ⁻¹)
1 × 10 ⁹ (GeV)	1 × 10 ⁴
1 × 10 ¹² (TeV)	1
1 × 10 ¹⁶ (10 PeV)	1×10^{-7} (a few times a year)
1 × 10 ²⁰ (100 EeV)	1 × 10 ⁻¹⁵ (once a century)

Primary Ray Flux Rate Comparison


•
$$(10^{14} \text{eV}) \left(\frac{10^{-9}}{GEV \cdot m^2 \cdot s}\right) \left(\frac{1GEV}{10^9 eV}\right) = 10^{-4} \cdot m^2 \cdot s$$

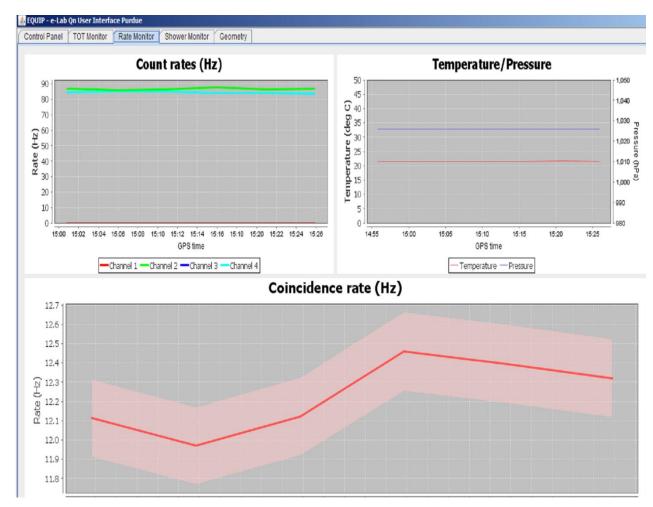
• $(10^{18} eV) \left(\frac{10^{-21}}{GEV \cdot m^2 \cdot s}\right) \left(\frac{1GEV}{10^9 eV}\right) = 10^{-12} \cdot m^2 \cdot s$

*(
$$10^{-4}m^2 \cdot s$$
) (3.154x 10^7s) = 3154 particles/ m^2 /year
*($10^{-12}m^2 \cdot s$) (3.154x 10^7s)(1000m)² = 31.54 particles/K m^2 /Year

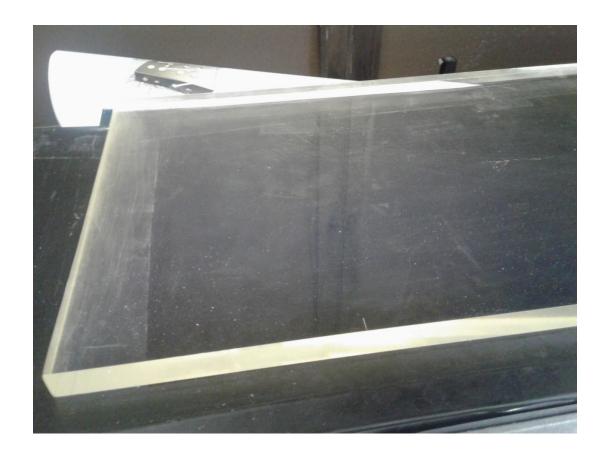
- This is a hundred times less particles, in an area of sky a million times bigger.
- Particles of energy levels of 10²⁰ eV or higher are seen about once per square meter per century.

Muon Showers at ground level

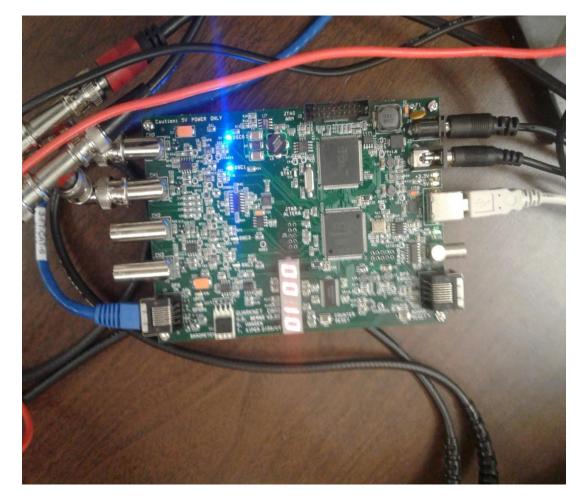
- 90% of muons hit the ground less than 2000ns after collision
- For a 10¹⁸ eV Primary Cosmic Ray all muons fall in a radius of 6km of the core impact
- Particles are distributed as a function of distance from the core.
- The energy level of primary cosmic rays is proportional to the diameter of the pancake of muons.


Muon Flux Rate

- Muons lose energy as they travel through earth's atmosphere.
- The accepted flux rate at sea level is 1 muon per square cm per minute.
- To calculate the flux of our counters; calculate the area of the counter and divide by 60
- This is the flux rate of the counter in hertz.


Detector Efficiency

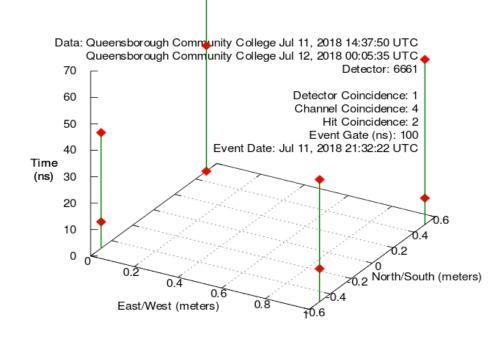
- How do we verify our counters are running properly?
- With two counters stacked on top of each other, most noise is eliminated.
- If our counters have an area of 750 square cm what is the expected coincident rate?
- $750cm^2/60s = 12.5 \text{ Hz}$


Plastic Scintillator

- Muons hit plastic scintillator which absorbs the energy and emits light.
- This light pulse is picked up and amplified by a photomultiplier tube (PMT).
- Pulse then gets sent to the DAQ board through signal cables and is binned as a function of signal duration above a user set threshold.

Data Acquisition Board (DAQ)

- If Pulse does not meet threshold it is disregarded by a discriminator.
- DAQ Board operates at a frequency of 25Mhz (25,000,000 Hz).
- Can operate with up to four separate counters.
- DAQ uses at least 5 satellites to verify data and timing information.


Data Analysis

- DAQ outputs data in hexadecimal format.
- Data files contain 16 "words" on each line.
- Hexadecimal data is converted to decimal and binary then interpreted.
- To calculate the absolute time an "event" occurred, the following formula is used:
- (Ksec+ Pmsec/1000) + (A-J/25Mhz) = Time

EQUIP_5JUN2018_152220 - Notepad																			
<u>F</u> ile	<u>E</u> dit	For	mat	Vie	ew	<u>H</u> elp													
											655E7F6B								
											655E7F6B								
											655E7F6B 655E7F6B								
											655E7F6B								
											655E7F6B								
											655E7F6B								
											8A9F3DAB								
8AC	59F1	8 0	00	2E	00	00	00	00	00	00	8A9F3DAB	041946.	005	060618	A	08	ō	+0064	
	59F1										8A9F3DAB								
											8A9F3DAB								
											8A9F3DAB								
											A6EF2A6B								
		-			_	_				_	A6EF2A6B								
	18B7										A6EF2A6B A6EF2A6B								
											AGEF2AGB								
											A9EA1AEB								
											A9EA1AEB								
	A731										A9EA1AEB								
AAD	A731										A9EA1AEB								
											A9EA1AEB								
											C1C19EEB								
											C1C19EEB								
											C1C19EEB								
											C1C19EEB								
											C1C19EEB C1C19EEB								
											C1C19EEB								
											D3A341EB								
											D3A341EB								
D44	6E 3F	E	00	21	00	22	00	00	00	00	D3A341EB	042035.	013	060618	А	08	0	+0032	
											D3A341EB								
											D3A341EB								
											D81BAAAB								
											D81BAAAB								
											D81BAAAB								
											E87FD56B E87FD56B								
											E87FD56B								
											E87FD56B								
											E87FD56B								
											E87FD56B								
E 06	NDA 8		nn	00	00	24	00	00	00	00	E\$7ED568	012010	01 2	060618	۸	08	Δ	+0056	

<u>First Study</u>

Shower Study

• Shower Rate for this set up is approximately 3 per hour or ~0.001 Hz

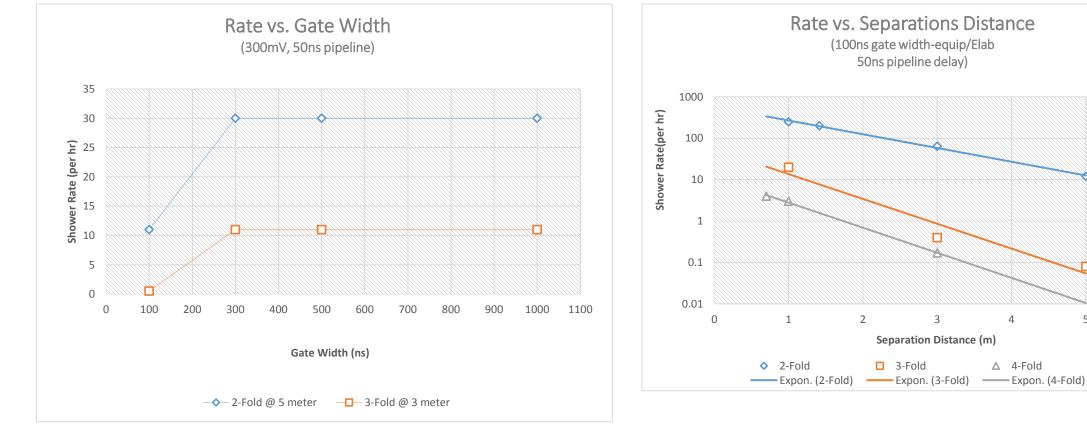
Second Study

- Added a second DAQ and GPS.
- Could not find any showers.
- Timing information errors?
- GPS receiver may have to be in clear view of sky and connected to a specific number of satellites.

Recent Study

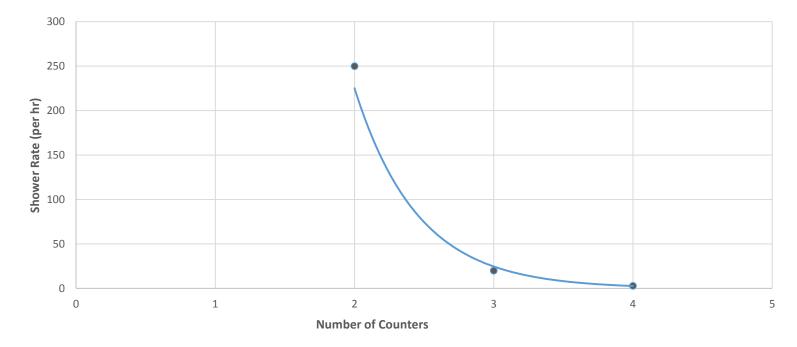
Three-Fold ~20 per hour

Four-Fold ~4-13 per hour



Results

Rate vs. Gate Width



6

5

Results Cont.

Rate vs. Number of Counters (1DAQ @ 1meter) (100ns gate, 50ns pipeline, 300mV)

<u>Acknowledgements</u>

- This project is supported by a grant from the NASA MUREP Community College Curriculum Improvement (MC3I) under NASA Award Number NNX15AV96A'.
- Professor Raul Armendariz and Professor Marie Damas
- The REU program and all the professors at QCC that contributed to this project.